

Conversion Factors And Formulas

		UNITS O	F LENGTH		
UNIT	INCH	FOOT	YARD	CENTIMETER	METER
INCH	1	.0833	.0278	2.54	.0254
FOOT	12	1	.333	30.48	.3048
YARD	36	3	1	91.44	.9144
CENTIMETER	.3937	.0328	.0109	1	.01
METER	39.37	3.281	1.094	100	1

UNITS OF AREA					
UNIT	SQ. INCH	SQ. FOOT	SQ. YARD	SQ. CM	SQ. METER
SQ. INCH	1.00	0.00694	0.000772	6.452	0.000645
SQ. FOOT	144.00	1.00	0.1111	929.00	0.0929
SQ. YARD	1296.00	9.00	1.00	8360.00	0.836
SQ. CM	0.1550	0.001076	.00012	1.00	0.0001
SQ. METER	1550.00	10.76	1.196	10,000.00	1.00

UNITS OF VOLUME							
UNIT	U.S. GAL.	IMP. GAL.	CU. FT.	LB. WATER	CU. METER	QUART	LITER
				AT 60°F			
U.S. GAL.	1.0	.833	.1337	8.33	.003785	4.0	3.785
IMP. GAL.	1.2	1.0	.1605	10.0	.004546	4.8	4.546
CUBIC FT.	7.481	6.232	1.0	62.37	.0283	29.92	28.32
LB. WATER	.120	.10	0160	1.0		.48	.454
CU. METER	264.2	220.0	35.31	2204.0	1.0	1057.0	1000.0
QUART	.25	.208	.0334	2.086		1.0	.9464
LITER	.2642	.220	.0353	2.204	.001	1.057	1.0

Useful Formulas:

Liquid HP or useful work done by pump— $WHP = \underbrace{(GPM) \ X \ (TDH) \ X \ (S.G.)}_{3960}$

kw input to motor = $\frac{BHP \times 0.746}{Motor Eff.}$

Brake HP required to drive the pump— $BHP = \underline{(GPM) \ X \ (TDH) \ X \ (S.G.)}$ $3960 \ X \ Pump \ Eff.$

Pump efficiency = $\frac{OUTPUT}{INPUT} = \frac{WHP}{BHP}$

Electrical HP input to motor = $\frac{BHP}{Motor Eff.}$

Overall efficiency = Pump Eff. X Motor Eff.

Velocity formula: $V = \underbrace{.409 \text{ X GPM}}_{(d_1^2 - d_2^2)}$

Where: GPM = flow rate in gallons per minute

TDH = total dynamic head in feet

S.G. = fluid specific gravity (water S.G. = 1)

V = velocity in feet per second

= fluid passage major diameter i

d₁ = fluid passage major diameter in inch d₂ = flow passage minor diameter in inch (if applicable)

Conversion Factors And Formulas

Capacity		
1 Cubic Foot Per Second	449.0	GPM
1 Acre Foot Per Da	227.0	GPM
1 Acre Inch Per Hour	454.0	GPM
1 Cubic Meter Per Minute	264.2	GPM
1,000,000 Gal. Per Day	694.4	GPM

To Find Capacity of a Tank or a Cistern:

 $D \times D \times h \times 5.875 = Capacity in U.S. Gallons$

Where: D = Diameter of Tank in Feet h = Height of Tank in Feet

Head	
1 Pound Per Square Inch (PSI)	2.31 ft. of water 2.04 in. mercury 0.07 kg. per sq. cm
1 Foot of Water	$\begin{cases} 0.433 \text{ PSI} \\ 0.885 \text{ in. mercury} \end{cases}$
1 Inch of Mercury (or vacuum)	1.132 ft. of water
1 Kilogram Per Square cm.	14.22 lb. PSI
1 Atmosphere (at sea level)	14.7 PSI 34.0 ft. of water 10.35 meters of water
1 Meter of Water	3.28 ft. of water

	Volume
1 Acre Foot	{43,560 cu. ft. 325,829 U.S. gal.
1 Acre Inch	{3,630 cu. ft. 27,100 U.S. gal.

Horsepower
1 HP is equivalent to: 0.746
kilowatts
746 watts
33,000 ftlbs. per minute
550 ftlbs. per second

	Electric Power		
AC	= Alternating current power		
DC	= Direct current		
Е	= Volts		
	= Electrical pressure (similar to head)		
I	= Amperes		
	= Electrical current (similar to rate of flow)		
W	= Watts		
	= Electrical power (similar to head capacity)		
KW	= Kilowatts = 1000 watts		
App	arent Power = Volts x amperes = Voltamperes		
App	arent Power = EI		
Uset	$ful Power = W = EI \times P.F.$		
Power	factor = ratio of useful power to apparent power		
Power	factor = PF = W/EI		
KW H	KW Hr. = Kilowatt hour		
Single	phase power $W = E \times I \times PF$		
3 Phas	se Power W = $1.73 \times I \times PF$		
Whe	ere E = Average voltage between phases		
	I = Average current in each phase		