

Component Problem Solving

IMPELLERS

TROUBLE SOURCE	PROBABLE CAUSE	REMEDY
Wear on exit vanes and shrouds.	Abrasive action.	Replace impeller if excessive.
Consider		coating or upgrading material.
Pitting on entrance vanes of impellers.	Cavitation.	Correct condition or upgrade material
		to extend life.
Pitting on impellers and bowl castings.	Corrosion/Erosion	Investigate cost of different materials.
		vs. frequency of replacements.
Wear on impeller skirts and/or bowl	Abrasive action or excess wear	1. Install new bearings and wear rings.
seal ring area.	impeller skirts due to worn bowl bearings.	Upgrade material if abrasive action.
	2. Impellers set too high.	2. Install wear rings and adjust
		correctly.
Impeller loose on shaft (extremely	1. Repeated shock load by surge in suction or	1. Re-fit impellers. If collet mounted,
rare occurrence.)	discharge line. (Can loosen first or last stage	consider changing to key mounting.
	impellers.)	2. Remove cause of jamming.
	2. Foreign material jamming impeller. (May	3. If collet mounted, consider change
	break shaft or trip motor over load before	to key mounted. Avoid sudden
	impeller comes to loose.	thermal shock.
	3. Differential expansion due to temperature.	4. Correct parts and refit.
	4. Parts improperly machined and/or assembled.	5. Add keyway to collet mounting.
	5. Torsion loading on submersible pumps.	

BEARINGS

TROUBLE SOURCE	PROBABLE CAUSE	REMEDY	
Bearing seized or galling on shaft.	Running without lubrication.	Check lubrication, look for plugged suction or evidence of flashing.	
Bearing failure or bearing seized.	High temperature failure.	Check pump manufacturer for bearing temperature limits.	
Excessive shaft wear under rubber bearings	Rubber bearings will swell in hydro-carbon, H ₂ S & high temperature.	Change bearing material.	
Premature bearing wear.	Abrasive action.	Consider conversion to water flushing pressure grease or oil lubrication on all bearings.	
Uneven wear on bearings, uniform wear on shaft.	Pump's non-rotating parts misaligned.	Check mounting and discharge pipe connection for dirt between column joints. Correct misalignment, replace bearings and repair or replace shaft.	
Uniform wear on bearings and shaft.	Abrasive action.	Replace parts, consider changing materials or means of lubrication.	
Uniform wear on bearings, uneven wear on shaft.	Shaft run-out caused by bent shafts, shafts not butted in couplings, dirt or grease Shafts ends not properly faced.	Straighten shaft or replace, clean and assemble correctly. Reface shaft ends, parallel and concentric.	

Component Problem Solving (Con't)

SHAFT AND COUPLINGS

TROUBLE SOURCE	PROBABLE CAUSE	REMEDY
Bent shaft.	Mishandling in transit or assembly.	Check straightness. Correct to .005"/10 ft.
		total run-out or replace.
Shaft coupling elongated (neck	1. Motor is started while pump running in	1. Look for faulty check valve. Could
down).	reverse.	also be momentary power failure or
	2. Corrosion.	improper starting timers.
	3. Pipe wrench fatigue on reused couplings.	2. Replace couplings.
	4. Power being applied to shafts that are not	3. Replace couplings.
	butted in coupling.	4. Check for galling on shaft ends.
Shaft coupling unscrewed	Pump started in reverse rotation.	Shafts may be bent, check shafts and
		couplings. Correct rotation.
Broken shaft or coupling.	1. Can be caused by same reasons listed for	1. Same as for coupling elongation.
	coupling elongation.	2. Same as above for bearing seizure.
	2. Can also be caused by bearings seized due to	3. Add strainers or screens.
	lack of lubrication.	4. Check alignment of the pump
	3. Foreign locking impellers or galling wear	components to eliminate vibration.
	rings.	5. See Engineering Section for
	4. Metal fatigue due to vibrations.	correction.
	5. Improper impeller adjustment or continuous	
	upthrust conditions, causing impeller drag.	

BOWLS

TROUBLE SOURCE	PROBABLE CAUSE	REMEDY
Wear on bowl vanes.	Abrasive action.	Coat bowls, upgrade material or rubber
		line.

PACKING BOX

TROUBLE SOURCE	PROBABLE CAUSE	REMEDY
Excessive leakage.	1. Improper packing.	1. Repack correctly.
	2. Incorrect type or defective packing.	2. Repack with the correct grade for
	3. Worn shaft or sleeve.	service.
		3. Remachine or replace scored parts.
Packing box overheated.	1. Improper packing procedure.	1. Repack correctly.
	2. Packing too tight.	2. Repack with the correct grade for
	3. Insufficient lubrication.	service.
	4. Incorrect type of packing.	3. Remachine or replace scored parts.
Packing wears prematurely.	1. Improper packing.	1. Repack correctly.
	2. Insufficient lubrication.	2. Repack correctly.
	3. Shaft or sleeve scored.	3. Remachine or replace scored parts.
	4. Incorrect type of packing.	4. Repack with the correct grade for
	5. Abrasive action.	service.
		5. Remove source of abrasives.

INNER COLUMN

TROUBLE SOURCE	PROBABLE CAUSE	REMEDY
Water in inner column.	1. Bypass ports plugged.	1. Remove cause.
	2. Badly worn bypass seal or bearings.	2. Replace worn parts.
	3. Tubing joint leaking.	3. Ensure tubing joint face is clean and
	4. Crack or hole in tubing.	is butted squarely.
	_	4. Replace section affected.

Temperature Limitations And Recommendations

MATERIAL	TEMP. RANGE °F	MINIMUM S.G.	REMARKS
Neoprene	32 to 100	1.0	Good for abrasive service. Not recommended where sulfides are present.
Nitrile	-40 to 250	1.0	Good for abrasive service. Resistant to petroleum products. Not recommended where sulfides are present.
Bronze	-60 to 200	0.5	General purpose bearing successfully applied on non-abrasive fresh or salt water and hydrocarbons.
Engineered Plastic (Elastomeric Polymer/ Thermoplastics/ PTFE)	-80 to 250	0.3	Good for abrasive service. Low friction; suitable for dry start-up. Generally inert to harsh chemical solutions.
Carbon Graphite Babbitt	-100 to 400	0.5	Good for extreme temperatures and non- abrasive fluids. Also excellent where fluid has poor lubricating properties.

Notes: Temperature and S.G. are approximate for material classes, consult manufacturer for specific material alloy properties and service limits.

Construction	TEMP. RANGE °F	REMARKS
Bearings	100-140	Increase standard clearances .005"
Bearings	>140	Increase standard clearances .010"
Impellers	>200	Keyed impellers required
Wear Rings	>200	Mechanically affixed wear rings required
General	>140	Special consideration must be made for thermal properties of dissimilar materials. Consult Factory.